
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023866
TITLE: Message Passing for Parallel Processing of Pressure-Sensitive Paint
Images

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2004. DoD
High Performance Computing Modernization Program [HPCMP] held in
Williamsburg, Virginia on 7-11 June 2004

To order the complete compilation report, use: ADA492363

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023820 thru ADP023869

UNCLASSIFIED

Message Passing for Parallel Processing of Pressure-Sensitive Paint Images

Wim Ruyten and William E. Sisson
Aerospace Testing Alliance, Arnold AFB, TN
{wim.ruyten, William. Sisson } @amold.af.mil

Abstract achieving automated processing in near real time (i.e.,

within 15 seconds of taking data).

A message-passing scheme is described that allows
parallel processing of pressure-sensitive paint images on
a machine with multiple processors or a cluster with
multiple nodes. The scheme implements the use of forks
and pipes in the former case and socket-based TCP/IP
communications in the latter. The approach demonstrates
how multiple copies of a nonparallel legacy code (in this
case, NASA's Green Boot software) can be made to run in
parallel in either a parent-child or a client-server
configuration. Results are presented for benchmark data
from wind tunnel tests of an F-16C fighter jet model and
NASA's X-38 Crew Return Vehicle.

1. Introduction
Figure 1. Wind tunnel test section with test article and

Pressure-sensitive paint (PSP) has established itself eight cameras
as an important test and evaluation tool for measuring
full-field pressure distributions on test articles in 2. Parallellization Approach
aerodynamic test facilities, particularly transonic wind
tunnels [l'. At the Arnold Engineering Development Figure 2 illustrates how data processing requirements
Center (AEDC), these pressure distributions are obtained naturally suggest a master-slave implementation of
by processing image data from up to eight digital cameras
in the test section of the wind tunnel (see Figure 1). Final parallel processing PSP image data: A master process

data are presented to the customer on a three-dimensional initiates a request to process a data point, whereupon up

(3D) grid of the test article. Processing steps include to eight slave processes (one for each camera) perform

automatic target detection, image registration, image partial processing of image data from a particular camera,

alignment, reflected-light correction, conversion of signal resulting in processed data that are mapped to the 3-D

ratios to pressure, and mapping of image data to the 3D grid. The master process then collects this mapped data
grid[2,3]" from the slaves, merges this data onto a single 3-D grid,

Data processing is accomplished with Green Boot, a and completes processing of the data. These steps are
code that was developed originally by NASA Ames described in detail in Reference 3. The present paper

Research Center and McDonnell Douglas Aerospace focuses on the message-passing scheme that was

(MDA). The code consists of some 90,000 lines of C developed to implement this concept.

(with some FORTRAN), offers extensive Graphical User Figure 3 lists a typical macro that is executed by the

Interface support, and has provisions for script-based master process: It defines the names of the to-be-

processing. It has always been possible to run multiple processed images and the final 3-D data file on the basis
of run and sequence numbers of the data points. It then

management of the required databases and script files has instructs each of the slave processes in Figure 2 to execute
man entof he rere a and riptiest hs the script slave-macro for a particular camera, merges
proven to be cumbersome and an impediment to

0-7695-2259-9/04 $20.00 © 2004 IEEE 308

the returned data onto the 3-D grid, and saves the final performs MERGE_3D on two sets of images, performs the
result in Plot-3D (or other) format. The INSTRUCT and reflected-light correction, and only then performs the
MERGE 3D commands are built into the Green Boot convert macro before saving the final result.
code, whereas _define and _save are script files that
are defined by the user in terms of native Green Boot -define $2 i ~.$1 defd.. .

_lad SREF $$/ Lowad refe ree irage (e.g.. wind-otft
commands. The variable $P3D is set by the script /-/o Load s ' w* , (..., ilid-onl

_ragitalr RE J/ Pind tatrgato and regiatil- rtf image

.ign =11N $REP 11 Align tIh. rn loop, to the -ef I..ge
convert IV"51 // Ratio imag os nd cmnvert to pr-otur.

Master Process Slave Processes IR3 $MA / a relt .. b0ak to 1grdf-tio.

Initiate(e.g., one per camera) Figure 4. Typical realization of a slave_master in
Process Data Point Figure 3

Merge Data on 000' 3. Implementation
Single 3D Grid Per-Camera

Processing. The master-slave communications' scheme from

Complete Processing Data on 3D Figure 2 has been implemented in two ways. In the first
and Save Result Grid approach, the master process is forked repeatedly before

X-window support is requested, and write and read pipes
Figure 2. Master-slave approach to PSP data are established from the parent process (the master) to the

processing resulting child processes (the slaves)., In the second

define $1 2 // $1, $2 define data point approach, slave processes are started up in server mode on
.T...c CA (o0 02 0 0. 0 // Loop Over all caera. one or more host machines at preselected ports, and theI ~TIRUCT $CAM $1vemar $ 2 $CAN I/ lzoc.s $CM on 91-v $CAMI

end /End of loop master process acts as a client that requests a socket-based
"E=_3D $ 3D/ Combine data Ol 3D grid_ E iD /1, Eave final rot TCP/IP connection to each slave 4]. In both cases, a set of

Figure 3. Typical master macro script file descriptors is established on each process (fdw [for
writing, fdr [] for reading), as illustrated in Figure 5.

In Figure 3, the instruction "INSTRUCT $CAM..." This allows the program to communicate between
causes the script "slavemacro $1 $2 $CAM" to be processes by performing system-defined WRITE and
executed on the slave process assigned to camera $CAM. READ calls on these file descriptors, as illustrated in
(Here, $1 and $2 represent the run and sequence numbers Figure 6 for a set of data contained in a buffer, buf. The
of the data point.) Figure 4 lists a typical realization of while loop in Figure 6 ensures that data packets are
slavemacro. It loads the reference and run images received in full, even if more than one set of write/read
from the specified camera; finds the registration targets; operations is required. Typically, 0.9 to 1.dMB of data
registers the images by determining the mapping are returned to the master process per slave process per
transformation from 2-D image space to 3-D model space, data point. These data are buffered in packets of up to
aligns the two images (to account for small rotations 10,000 bytes, a size that appears to work well for both the
and/or shifts between the two); ratios the images; converts pipe and the socket implementations.
the ratio to a pressure or pressure coefficient (based on a
calibration equation); maps the resulting pressure to the Master Slave I
3-D grid; and sends this information back to the master
process. The variables $REF, $RUN, and $P3DCAM in fdw[O] fdw[0]
Figure 4 are each set by the script _define. All scripts fdr (0]
prefaced with an underscore are defined by the user. Slave 2

The processing sequences from Figures 3 and 4 can fdw [1] fdr [1]
be used both with intensity-based PSP (in which a fdr [I] fdw (0]
reference image is obtained with the tunnel at
atmosphere) and with lifetime-based PSP, in which both fdw (2]

the reference and the run images are obtained at the run fdr 2]Slave 3
condition. Variations on these scripts are possible. For fdr[p]

example, in order to perform a correction for reflected etc. fdw [0]

fluorescent light, the reference and run images both have etc. '

to be fully mapped to the 3-D grid before conversion to Figure 5. Implementation of master-slave
pressure can take place. In this case, the master macro communications through file descriptors

309

relied on the use of instruction files that were written to
-it tdv[0 le.) // wel gth o d tar~ ni
.riotfdO. o.".oi),o. , 0/,OO ieotI. dwe. and read from a common file system. In particular,
oritelfdw l ;-.tt , o en) , // Write data

int len, nr9: Initilize n te. xd conflicts that arose when one process was trying to read
.[, .., of ,data, from-"a." from the file system while another was in the process ofwhil~int'l*]en)I/ h1ol nti l ol d 't.a _',34,

... Readdat.uf l, .. d owe " writing to it (or vice versa) are avoided with both the

Figure 6. Interprocess communication via system- fork/pipe and socket approaches, which perform buffering
level WRITE and RAw calls and synchronization of read and write operations

implicitly. Master and slave processes still access a
Figures 7 and 8 show partial source code for the common database for tracking information related to the

establishment of the file descriptors in the two scenarios. raw and processed image data. This is a commercially
The fork/pipe implementation in Figure 7 is available SQL database that is designed specifically to
straightforward and requires separate pipes for writing synchronize access by multiple processes.
and reading. The socket implementation from Figure 8 is To facilitate management of the slave processes on a
somewhat more involved, but allows both reading and cluster, a Green-Boot-specific daemon process is
writing on a single socket. Byte swapping, if required, is registered on each node of the cluster under the super-
performed by the master process only. (For example, in daemon inetd[4 . This allows a Green Boot slave
Figure 6, the variable len would be byte-swapped prior process to be started, polled, and shut down remotely
to the first write operation.) from the node on which the master process is executed

(typically, the front end of the cluster).
far lint .. ; -: Y l I Root 1- Some further details on the operational modes of the

iot MS21,.M121, pid;
it l i palm r-r... H Crett. pipet improved Green Boot code are presented in the Appendix.
it (p0d.-f) 4 // Parent prcea maate-l
tdo[.J.MgHII; rlooelMft fi0 I deoriptoro
fdrlo| .fM[; clone (fll....4. Results

.I.* it (pid'fO 4 i Child pooct (ol-.v)

idolI.H l a lfal; I,' get filec decoriptooc
fettr ro.Mta maoe...tloto Correct functioning of the code was verified on
(enter 01.00 code...) 1/ trdetinite loop

)several platforms, including an SGI Octane 2 (with dual

Figure 7. Fork-pipe implementation with master IP30, R14000 processors running at 600 MHz), an older

process as parent, slave processes as children SGI Origin 2000 (with eight IP27, R10000 processors
running at 195 MHz), and a Linux cluster consisting of a

S..t .1-. p...... in .-.. front end and eight nodes. The Linux cluster (runningatruct aOCkaddr" in 0ock. int fd:
c.0.. c...k. ck_;E. p. ,. lot f R_; // ort Red Hat Linux 7.3) is powered by dual P4 Xeon

lot fdtc tm -k CAP_1= 90MSTlRtllVF", PPROTXOPCPI 11 TC -tP -Yrko
if bi o dfd_. ...o oofoockflo0l - processors on both the front end and the nodes, running at
if Se.iet lfd r rtiz.i.",l ctrer..
if codoctpr,.ciV,.f.Uw ,,e, eror..t 2.4 GHz and 2.2 GHz, respectively. Communication
tdr[01.tdoi .td; cloneftd tp): / File dc-riptorb

(enter monitoring code... between the front end and the nodes is through an HP
Star....r p- c...... cnt to s.... switch with a l-Gbit/sec Ethernet connection to the front
ctruor c kaddor it ck; ct-ct ototent -hont;
if (Qtoo gotho.tbyn.. .I .otnm))-ULL) eror... //-tporiy h.ot end and 100-Mbit/sec connections to each of the nodes.
(populate ao €k; Ai INET ort rrumber, hozt- h .tt / 1/ cify Port
int fd .oor.,tIAFlllT:=OC._ff11dPPOTOTCPI; T.CI --/-k o.kt Measured transfer rates on the cluster (with one master
if lcon oct(fd.reik,.i-ooflnoo k{deeR } rroril .. eonnct ear.
fdr o.fd.J.l..d; F/ ile de-riptor- process and eight slave processes on the nodes) exceed 80

or~e 8.t TCP/IP implementationwithmasterprocessJ Mbit/sec.

Figure 8. TCP/IP implementation with master process When the code was run on a single multiprocessor
machine, no significant difference in total processing time

The fork/pipe approach is particularly suited to a was found between the fork/pipe and socket

single machine with multiple processors, such as a SGI implementations. This is consistent with the fact that

architecture. It has the advantage that the resulting slave interprocess communication requires far less CPU time

processes are tied directly to the master process, so that than does the actual processing of the data. As expected,

separate management of the slave processes is not best performance was obtained on the Linux cluster,
required. The socket approach is intended for use on a which has the highest processing speed among thecluster of machines in which multiple processors platforms tested. Total processing times per data point forcomunicat va machines Einet wconn tin. Inrthissas two benchmark data sets (involving an F- 16C fighter jet
communicate via an Ethernet connection. In this case,detailed in
one must exercise care to ensure that the slave processes an 3 Cree R esrn ted are and in
are running and communicating when the master requests Reference 3 for the three machines quoted above,and are
that a data point be processed. In either case, the resulting shown in Table 1, for both "2-D" processing (without a
scheme is much more robust than the one that was used in reflected-light correction) n "3-" ceg (ith a
the prototype version described in Reference 3, which reflected-light correction). In the F-16C case, image data

310

from eight cameras were processed on a master process on the front end of the cluster. This approach to
supported by eight slave processes; for the X-38 case, parallellization may be applicable to data processing
image data from six cameras were processed on a master schemes other than those used here for pressure-sensitive
process supported by six slaves. In both cases, four paint.
1024x1024x16-bit images are used for each camera
(wind-off and wind-on images, each with an associated 6. Appendix: Green Boot Run Modes
black image that is subtracted as part of the _load macro
in Figure 4), and final data are mapped onto a 3-D grid T
with more than 300,000 grid points. Figure 9 shows moe dpred resen ce oan berin matr
sample results for the two benchmarks, with color modes, depending on the presence of an optional master-

representing the value of the measured pressure (red slave argument on the command line: i

represents high pressure, blue represents low pressure).
on the specified configuration files (i.e., a collection

Table 1. Processing times per data point in seconds of data files with different extensions, ieach of which
has "config" as the root name of the file. (This is

SGI Origin 2000 SGI Octane 2 Linux Cluster
(8 Proc, 195 MHz) (8 Proc, 600 MHz) (1+8 Proc, 2.2 GHz) the original Green Boot mode.)

F-16C X-38 F-16C X-38 F-16C X-38 (2) "$PATH/gb config -forN": Start a
2D (w/o 27 22 30 22 7 6 master process that will fork N slave processes. The

41 31 38 28 10 8 slaves are terminated upon exiting the master
redfi process.

(3) "$PATH/gb config -portP I &": Start (in
background mode) a slave process that will, upon

.. being contacted by a master client process, establish a
TCP/IP connection to the master process on (slave)
port number P. This command can be performed
either manually on the machine upon which the slave
process is to be run, or auto1acally as the slave

-. -process can be spawned by the inetd super server,
a. F-16.. when the super server receives a remote request from

Figure 9. Examples of processed data for the two the master process. The slave process is terminated
benchmark cases. when the server receives the built-in Green Boot

command "QUIT" from the master process.
From a performance perspective, the results in (4 f

Table 1 are particularly significant in that a single data (4) "$PATH/gb config -serv: Istart a master

point can be processed in well under 15 seconds on the process that will request that a series of slave

Linux cluster. This was the AEDC goal for achieving processes be spawned remotely, depending on the
near-real-time processing of PSP test data. contents of a setup file. The setup file contains, for

each camera, the hostname and port number of the
node that is to run a slave process for ihat camera in

5. Conclusion server mode, as well as the paths to the database files
and the Green Boot executable on the, node. When

It has been successfully demonstrated that it is the master process is able to verify that all of the
possible to parallellize an intrinsically nonparallel legacy slaves are in listening mode (see Figure 8), the socket
code, particularly one that lends itself to a master-slave connections are established. When the user exits the
configuration in which the master process initiates a master process, the master sends a QUIT command to
request to process a data point, slave processes perform each of the slave processes.
partial processing of the data, and the master process
completes processing of the data after combining the
results from the slaves. Communication between the Acknowledgments
master and the slaves can be accomplished either across
pipes by repeatedly forking the main process (on a The research reported herein was performed by the
multiprocessor machine) or (on a cluster) by establishing Arnold Engineering Development Center I(AEDC), Air
socket-based TCP/IP communications between master Force Materiel Command. Work and anilysis for this
and slaves, with each slave running as a server process on research were performed by personnel of Aerospace
a node, and the master process running as a single client Testing Alliance, the operations, j maintenance,

311

information management, and support contractor for 2. Ruyten, W., M. Sellers, R. Clippard, and M. Craig, "Pressure-
AEDC. Further reproduction is authorized to satisfy Sensitive Paint in Wind-Tunnel Testing: A Computational

needs of the US Government. This work was supported Challenge." DoD HPC Users Group Conference, Albuquerque,

in part by funding from the Test and Evaluation Program NM, June 5-8, 2000.

of the Air Force Office of Scientific Research, managed 3. Ruyten, W. and S. Sellers, "On-Line Processing of Pressure-

by Dr. Neil Glassman. The Linux cluster was purchased Sensitive Paint Images." AIAA Paper 2003-3947, 21st AIAA

with funds provided by the High Performance Computing Applied Aerodynamics Conference, Orlando, FL, June 23-26,

Modernization Program Office. 2003.

4. Quinton, R., "An Introduction to Socket Programming."
http://www.uwo.ca/its/doc/courses/notes/socket/.References

I. Bell, J.H., E.T. Schairer, L.A Hand, and R.D Mehta, "Surface
Pressure Measurements Using Luminescent Coatings." Annual
Review of Fluid Mechanics, Vol. 33, 2001, pp. 155-206.

312

